

1. (a) State one disadvantage of using quota sampling compared with simple random sampling.

(1)

In a university 8% of students are members of the university dance club.

A random sample of 36 students is taken from the university.

The random variable X represents the number of these students who are members of the dance club.

(b) Using a suitable model for X , find

(i) $P(X = 4)$

(ii) $P(X \geq 7)$

(3)

Only 40% of the university dance club members can dance the tango

(c) Find the probability that a student is a member of the university dance club and can dance the tango.

(1)

A random sample of 50 students is taken from the university.

(d) Find the probability that fewer than 3 of these students are members of the university dance club and can dance the tango.

(2)

2. The discrete random variable X has the following probability distribution

x	a	b	c
$P(X = x)$	$\log_{36} a$	$\log_{36} b$	$\log_{36} c$

where

- a, b and c are distinct integers ($a < b < c$)
- all the probabilities are greater than zero

(a) Find

- (i) the value of a
- (ii) the value of b
- (iii) the value of c

Show your working clearly.

(5)

The independent random variables X_1 and X_2 each have the same distribution as X .

(b) Find $P(X_1 = X_2)$

(2)

3 A company has 1825 employees.

The employees are classified as professional, skilled or elementary.

The following table shows

- the number of employees in each classification
- the two areas, A or B , where the employees live

	A	B
Professional	740	380
Skilled	275	90
Elementary	260	80

An employee is chosen at random.

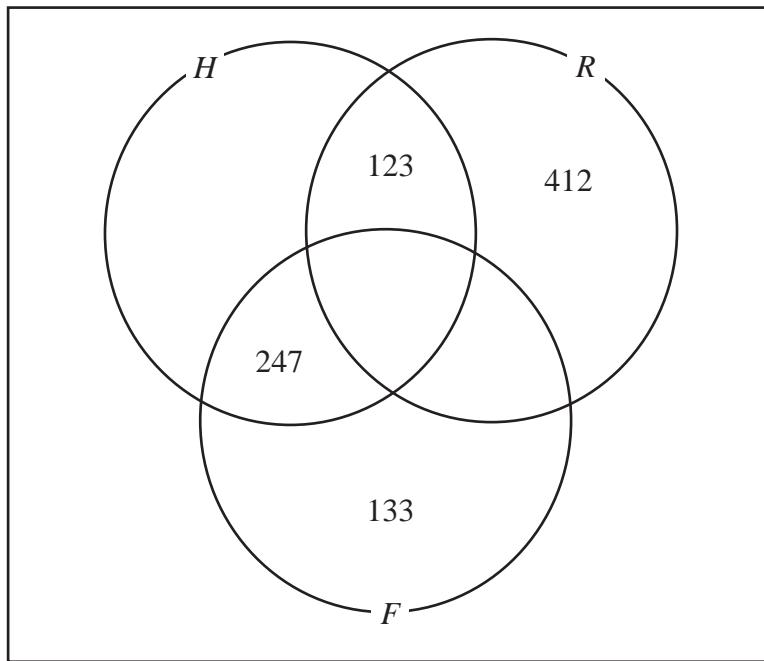
Find the probability that this employee

(a) is skilled, (1)

(b) lives in area B and is not a professional. (1)

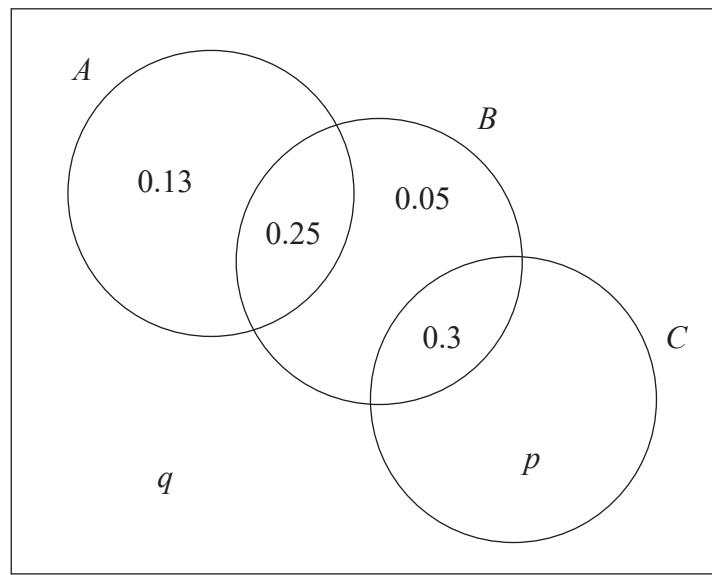
Some classifications of employees are more likely to work from home.

- 65% of professional employees in both area A and area B work from home
- 40% of skilled employees in both area A and area B work from home
- 5% of elementary employees in both area A and area B work from home
- Event F is that the employee is a professional
- Event H is that the employee works from home
- Event R is that the employee is from area A


(c) Using this information, complete the Venn diagram on the opposite page. (4)

(d) Find $P(R' \cap F)$ (1)

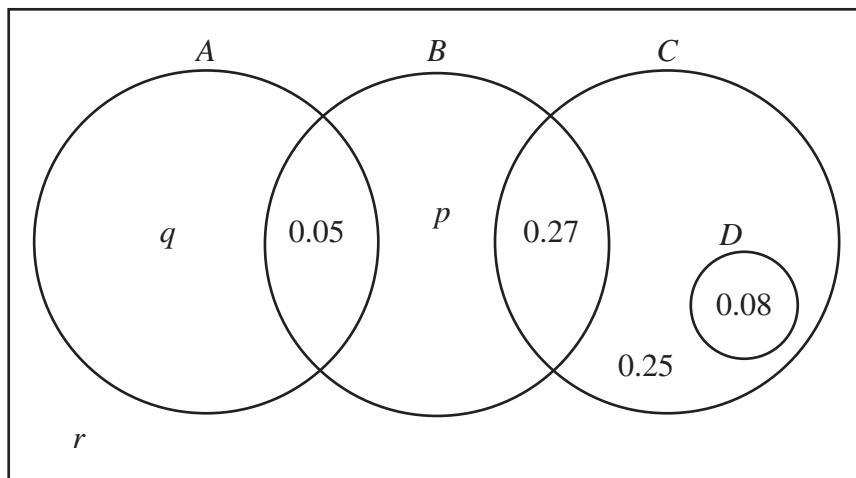
(e) Find $P([H \cup R]')$ (1)


(f) Find $P(F | H)$ (2)

Question 3 continued

Turn over for a spare diagram if you need to redraw your Venn diagram.

4. The Venn diagram, where p and q are probabilities, shows the three events A , B and C and their associated probabilities.


(a) Find $P(A)$ (1)

The events B and C are independent.

(b) Find the value of p and the value of q (3)

(c) Find $P(A|B')$ (2)

5. The Venn diagram, where p , q and r are probabilities, shows the events A , B , C and D and associated probabilities.

(a) State any pair of mutually exclusive events from A, B, C and D (1)

The events B and C are independent.

(b) Find the value of p (2)

(c) Find the greatest possible value of $P(A | B')$ (3)

Given that $P(B | A') = 0.5$

(d) find the value of q and the value of r (3)

(e) Find $P([A \cup B]^\prime \cap C)$ (1)

(f) Use set notation to write an expression for the event with probability p (1)